

Technical Document

Section 5 Team 4 Sprint 3
Author:​ Amelia Payne
Team Members: ​Brooke Pendleton, Matthew Randolph, Alejandro Shaw-Correa

Jinn’s Curse
January 28, 2019

2

Table of Contents

Table of Contents 2

Difficulty Rating 5

Delivery Platform 6
Windows PC 6
Mac/Linux 6
IOS/Android 6
Steam 7

Development Environment 8
Unity 8

Architecture 9

Logical Flow Diagram 10
Abstract Model 10
Turn Flow 11

Game Mechanics and Systems 13
Spell Phase 13

Player given income 13
Buying Inventory 13
Casting Spells 14
Exiting Spell Mode 14

Move Phase 15
Capture a Temple 15
Harvest a Farm 16
Exiting Move Phase 16

Art Pipeline 17

Design Pipeline 18
Global Data 18

Spells Scriptable Object 18
Spell Buttons 18
Temple Script 19

3

Player Data 19
Player Manager 19
Inventory Script 19
Spell Manager 19
Other Features 20

Milestone Updates 21
Sprint 1: 21
Sprint 2: 21

Sources: 22
Clock Icon 22
Information 22

4

Difficulty Rating

Symbol Difficulty

This feature will be quite easy to implement

This feature is technically complex but within
the realm of the developers experience

This feature is very complex and outside the
realm of the developers experience and will,
therefore not be implemented

This feature will take significant time to
implement

This feature is expensive to implement

5

Delivery Platform

Windows PC →

Jinn’s Curse will primarily be played on Windows PCs. Windows is the most prevalent
system for PC gaming, therefore be most practical to release for this platform first.

Furthermore, the developers of this game are familiar with the Windows system and

own windows PC’s which will make testing and debugging sympler. However, since

Jinn’s Curse will be built in Unity it can easily be ported to other systems.

Mac/Linux →

Jinn’s Curse would ultimately be available on all major PC operating systems so we
could reach more of our potential potential customers. Unity makes it easy to save

projects for other operating systems so this presents very little risk.

IOS/Android →

Mobile gaming is rapidly growing market worth approximately $50 billion dollars so it
requires serious consideration [1]. Jinn’s Curse is well suited to a mobile platform as it

is casual, however, releasing on mobile presents its own risks. Although Unity allows

any game to be built for IOS or Android, the UI and some key systems would need to be

redesigned which would take significant time. Additionally, IOS requires that games be

built on an Mac computer which raises costs. However, despite these issues, it may be

worth it to build for mobile.

6

Steam →

Steam is the way a vast majority of gamers purchase PC games[2]. Releasing on this
platform will give us access to the 90 million potential customers [2]. Jinn’s Curse will

be released through Steam Direct. Steam Direct presents few risks or costs but will take

significant time to activate as there is a minimum 1 month waiting period. Additionally,

releasing on Steam costs $100 dollars.

7

Development Environment

Unity →

Jinn’s Curse will be developed in Unity because it allows for the game to be built very
rapidly. All team members are familiar with Unity which makes everything easier. Unity

also provides a number of tools that allow the designer to change game stats without

coding. This will allow for more flexibility and make it easier for the designer to balance

the game. Additionally, these features will lesson the chance that the designer breaks

something critical while trying to modify the code.

The team will use Unity Colab to collaborate as it is easy to use does everything we
need for this project. Since the programmer is not familiar with version control using an

outside tool such as Git or SVN presents more risks than benefits.

Unity allows us to release the game on multiple platforms which will give us more
flexibility to expand our market. Finally, Unity is free to use for any company making less

than $100000 per year which lowers our overall cost.

8

Architecture​→

Jinn’s Curse is implemented based on the MVC (Model View Controller) design pattern.
The model consists of a scriptable object that stores spell data and the player manager

which manages scripts that store data about the players status, spell ownership,

inventory and movement. The view is managed by a group of UI scripts that handle

different elements of the UI.

The most important script in the game is the Game Controller, which manages the turn
flow and contains references to the current player and the other player. These

references allow the game to easily update or read in data. The game controller is

responsible for providing the view with any needed data and updating the model based

on input from the view. The Game Controller is a singleton and all other scripts can

reference it.

While this architecture will ultimately make the game easier to modify and more logical,
it takes more time to implement in the short term.

9

Logical Flow Diagram

Abstract Model →

10

Turn Flow →

11

12

Game Mechanics and Systems

Spell Phase→

The spell phase occurs at the start of every turn. During the spell phase players can not
move, instead they are presented with a UI containing buttons representing spells and

inventory. The spell phase allows players to manage their resources and plan their turn

without worrying about a timer.

Player given income ​→

At the start of each turn the player automatically receives income. The amount of
income can be set for each player in the inspector. This presents no technical risks.

Buying Inventory ​→

While this UI is active players can exchange spice bags for chickens or goats by clicking
on buttons. Each button displays the current count of the item and is updated

constantly. If a player does not have enough currency to buy a given item the button

becomes inactive and is grayed out.

The inventory system was relatively easy to implement and presents few risks.
However, it is not very expandible so problems may arise if more types of inventory are

added. Additionally, inventory is not currently presentant between runs which could

present an issue in the future.

13

Casting Spells​→

During each spell phase the player can cast one spell by clicking on the corresponding
button. The buttons are only active if a player is allowed to cast a given spell. The

following conditions must be true for a spell to be cast:

1) The player must control the spell
a) Players gain control of spells by capturing temples during their turn

2) The player must have enough chickens to pay the casting cost

a) Players buy chickens with bags of spices

3) The spell must not already be running

a) Buttons for spells that are currently active turn green and become inactive

Once cast each spell has a random chance of succeeding which can be set in the
inspector by the designer.

Casting spells presents few risks but is time consuming. While most elements of the
game including the names and costs of spells can be modified in the inspector the

effects of spells must be defined in code which is time consuming. If spells change in

the future time will be needed to update everything.

Spells present an additional risk because they are used in multiple places. When the
designer updates the name of a spell or the order of the spell list he must be careful to

also update the onclick effect of the corresponding button and the name in spell list

held by each temple.

14

Winning ​→

A player wins when they cast the divinity spell. In order to unlock the divinity spell the
player must unlock and cast all other spells. Once unlocked the divinity spell can be cast

as long as the player has enough resources. The amount of resources required can be

entered in the inspector. If the player succeeds in casting the spell the game ends and

they are taken to a win screen.

Exiting Spell Mode​→

Players can start the move phase of their turn at any time by clicking a start button. This
presents no technical risks.

Move Phase→

During the move phase players can explore the world. They can attempt to capture
temples or gain spices from farms. Any spells that were cast that affect the current

players movement take effect during the move phase. The time allowed for the move

phase is based on a random number within a range plus a booster which can be set by

spells. The player uses keyboard input to move and their speed is based on a set rate

plus or minus any spell effects.

Capture a Temple​→

When a player reaches a temple they automatically attempt to capture it. If they have
sufficient goats in their inventory they sacrifice one to gain control. The player can now

cast any spells controlled by the temple during their next spell mode. If the other player

previously controlled the temple they now lose control. The other player can no longer

15

cast spells that are tied to the temple, and the effects of any spell they had

previously cast are removed.

Capturing a temple presents very little technical risk. One problem could arise when
removing the effects of a spell. Since the magnitude of spells such as exhaustion are

set by the designer removing their effects could prove problematic since the program

does not know what the original magnitude was. This issue could be addressed by

using a modifier instead of setting speed and other attributes directly.

Harvest a Farm​→

When a player reaches a farm they can harvest it to gain valuable spices. The amount of
spices they receive is a random number chosen from a range. Players do not control

farms and any player can visit any farm. Once a farm has been harvested it is burned

out and can not be harvested again during the same turn. Farms present very little

technical risk.

Exiting Move Phase​→

When the players turn ends the game manager passes control to the other player. The
Spell Phase UI is then activated and the other players spell phase begins.

16

Art Pipeline ​→
The art will be created in Clip studio paint 2019 and saved as .png files following the
convention:

[AssetName]_[AssetVersionID].png

. All art will have transparent backgrounds. The art sizes will be as follows:

1. Characters​: 200 X 200
2. Inventory Items:​ 200 X 200

3. Spell Icons:​ 100 X 100

4. Background: ​2580 x 2542

After creating the art the artist will place it in the shared Art folder on google drive
(Production Project 1 > Art).

The team will then approve the art after which the programmer will place it into the art
folder in Unity. The team will communicate their approval over Google Hangouts chat.

The programmer or designer can then implement the art into the game.

17

Design Pipeline​→
Jinn’s Curse was architected with Designers in mind. Nearly everything in the game can
be modified without touching the code. The following information is available for the

designer to modify in the inspector.

Global Data

Spells Scriptable Object

The spells object controls the spells available and their costs. While the designer can
modify any spell data from the inspector it is important that they keep in mind that the

name of the spell serves as a unique identifier if updated here it must be updated in the

temple script. The disigner must also keep in mind that the spells are read into their

buttons in the same order as this list. If the designer wishes to add a spell they must

also add a corresponding button. The designer can modify the following variables for

each spell:

○ Name
○ Cost

○ Level

○ Description

Spell Buttons

Each spell button corresponds to one item in the spell list. It's on click event triggers the
casting of a spell. The designer can change the effect of any spell button by modifying

its onclick event in the inspector. Many spell functions also take an argument of amount

that determines the magnitude of the spell. The designer can modify the magnitudes in

the onclick event for each button.

18

Temple Script

Each temple script contains a list of spells that it controls. The designer can modify the
number and type of spells controlled by entering them into the list that appears in the

inspector for this script. Keep in mind the capitalization and spelling must be exact.

Farm Script

The designer can modify the minimum and maximum payout for each farm.

Player Data

The designer can modify a great deal of statistics for each individual player. There are a
few key scripts that handle this data.

Player Manager

The player manager handles data about the players turn. The players turn length is
calculated using the following formula: Random.Range(min turn length, max turn

length) + booster - decrementer. The designer can modify the following values:

● Minimum Turn Length
● Maximum Turn Length

● Booster

● Decrementer

● Gold per turn

● Player Colors

● Player Icon

● Player Tolken

Inventory Script

19

This script manages the player's inventory of items such as spices, chickens and
goats. The designer can modify the following values:

● Starting Spice Sacks (internally called gold)
● Starting Chickens

● Starting Goats

● Income per Turn

Spell Manager

In the spell manager the designer can set spells to be owned as start for a given player.
Please keep in mind that the size of this list must always be equal to the number of

spells. Also keep in mind that it is not advisable to set spells to be running at start as

they will appear to be running but not actually have any effects.

Other Features

If the designer would like to modify any other element of game play or create more spell
they will contact the programmer or bring it up at a meeting.

20

Milestone Updates

Sprint 1:

Helped the build the physical prototype. No work was completed on electronic
prototype

Sprint 2:

Most of the core features of the game are finished. Next sprint will consist of finishing a
few features and refactoring code, UI polish, and balance

Sprint 3:

The game has been polished. The remaining core features were implemented and an
minimap was added. The UI was polished. The code was refactored and organized.

21

Sources:
Clock Icon

https://play.google.com/store/apps/details?id=com.google.android.deskclock&hl=en_US

Information

[1]“The $50B Mobile Gaming Industry: Statistics, Revenue [Infographic],” ​Mediakix |
Influencer Marketing Agency​, 19-Jun-2018. [Online]. Available:

http://mediakix.com/2018/03/mobile-gaming-industry-statistics-market-revenue/#gs.5

NvgsXOt. [Accessed: 28-Jan-2019].

[2]C. Smith, “34 Interesting Steam Statistics | By the Numbers,” DMR, 21-Jan-2019. [Online].

Available: https://expandedramblings.com/index.php/steam-statistics/. [Accessed:

28-Jan-2019].

https://play.google.com/store/apps/details?id=com.google.android.deskclock&hl=en_US

